# Trends in the Hadley cell over the last two decades

Amy Clement and Christos Mitas
Rosenstiel School of Marine and Atmopsheric Sciences

CERES Science Team meeting, GFDL, May 3-5, 2005

### Tropical climate trends

Tropical mean radiative flux trends coincide with increased extremes of high OLR and low absorbed SW







- Clement and Soden (2005) showed that
  - Stronger circulation is not related to tropical mean radiative fluxes in an obvious (or robust) way (but there is a net decrease in absorbed SW with stronger circulation in AM2 due to increased low cloud cover)
  - But a stronger circulation does impact the extremes (as in Chen et al. 2002)
- Has the circulation increased over the last two decades?
  - Reanalyses
  - IPCC 20<sup>th</sup> century simulations
  - AMIP runs

# DJF Hadley cell index (Mitas and Clement 2004)

NCEP 1

NCEP 2

ERA40



## JJA Hadley cell index (Mitas and Clement 2004)

NCEP 1

Strengthening

NCEP 2

ERA40





GFDL coupled model shows a ~15% reduction in Hadley cell strength



# Why are the reanalyses different from the model simulations?

Approximate energy balance in the free troposphere:

$$Q = -\omega \, d\theta/dp$$
 
$$\Delta Q = -\left(\Delta\omega \, \overline{d\theta/dp} + \overline{\omega} \, \Delta d\theta/dp\right) + R$$
 
$$\uparrow \qquad \qquad \uparrow$$
 Heating Stronger vertical motion Larger lapse rate motion

ERA40: Change in the DJF Diabatic Heating (1950-2000) Averaged over 0 – 15S



# GFDL model: Change in the DJF Diabatic Heating (present to 4xCO2) averaged over 0 – 15S



Reanalyses show minimum warming in the mid-troposphere (as in UAH satellite record and NOAA and UKMO radiosondes)



Models show amplification of warming aloft (as in RSS satellite record)



## Which is right?

#### Conclusions

- NCEP1 and ERA40 show increasing strength of Hadley cell for DJF and JJA over the last 2 decades (NCEP2 does not)
- This is not consistent with IPCC 20<sup>th</sup> century runs or AMIP model runs
- Heat balance analysis suggests that the difference is related to difference in the vertical temperature structure response to climate change
- Which is consistent with CERES data? (In AM2, increased absorbed SW (reduced low cloud cover) is consistent with a weaker circulation)













### Tropical climate trends

Edition 2 data with altitude correction (courtesy of T. Wong)

